
Under the Roof of OpenJDK8
DevConf, Feb 2013

Jiří Vaněk

Under the Roof of OpenJDK8
DevConf, Feb 2013

Jigsaw
Lambda
Small features

Under the Roof of OpenJDK8
DevConf, Feb 2013

Lambda
Small features
Jigsaw

4

Index

1) One page of history

2) Lambda

a) Where

b) Why

c) How

d) Under the roof

3) Small changes

1) Miscellaneous

2) Javadoc

3) Infrastructure

4) Lang

1) JVM

2) Lambda connected features

5) Networking

6) Cryptography

4) Jigsaw

a) Why

b) Where

c) How

d) Under the roof

5

One page of history
devconf 2012 - http://rvokal.fedorapeople.org/devconf2012/jvanek-jdk8.pdf

1992 - started at Sun labs as project Oak

1996 - Version 1 publicly released

Cca 1998 - plugin, JIT, GNU classpath

Cca 2001 - HotSpot, javaws

Cca 2006 - JDK6, OpenJDK, IcedTea,

Cca 2009 - acquisition by Oracle, IcedTea-Web

Cca 2011 - OpenJDK7,

 - merging Of IcedTea to OpenJDK, jigsaw to JDK9

Middle of 2013 – OpenJDK8....

http://rvokal.fedorapeople.org/devconf2012/jvanek-jdk8.pdf

6

Well.. two of them

 OpenJDK7 – released in time, July 2011
● JVM support for dynamic languages (invoke dynamic),

● JRuby/Scala/... call directly to JVM (and no transformation to Java at
first) – really great performance boosts

● Via custom code which JVM inline through

● Small language changes (grouped under a project named Coin):
● Strings in switch, AutoCloseable, numeric literals
● Catching multiple exception types and rethrowing

exceptions with improved type checking
● Concurrency utilities (fork/join framework)
● New file I/O library to enhance platform independence and add

support for metadata and symbolic links. The new packages are
java.nio.file and java.nio.file.attribute

● Care is taken of community
● It was conservative change at the end!

7

OpenJDK8

 Jigsaw ---> JDK9 :(, decided October 2012

 Lambda

 Small features
● Finish Coin

 JavaFX 3.0 opensource

 Grail

8

OpenJDK8

 http://openjdk.java.net/projects/jdk8/

 Cloned from JDK7 at 2012/04/26
● ...
● 2013/01/31 Feature Complete

● Not true – 14.1 several features dropped, many
rescheduled to next milestones

● 2013/02/21 Developer Preview
● 2013/07/05 Final Release Candidate
● 2013/09/09 General Availability

http://openjdk.java.net/projects/jdk8/

9

OpenJDK8 – sources and build
 Bundles available at http://jdk8.java.net/download.html, and are going to be in

Fedora 19 (of course from source)

 Or you can get bleeding edge by mercurial:

● hg clone http://hg.openjdk.java.net/jdk8/jdk8
● + sh ./get_source.sh

● or
● hg clone http://hg.openjdk.java.net/jdk8/jdk8/jdk
● hg clone http://hg.openjdk.java.net/jdk8/jdk8/corba
● hg clone http://hg.openjdk.java.net/jdk8/jdk8/hotspot
● hg clone http://hg.openjdk.java.net/jdk8/jdk8/jaxp
● hg clone http://hg.openjdk.java.net/jdk8/jdk8/jaxws
● hg clone http://hg.openjdk.java.net/jdk8/jdk8/langtools

● ./configure; make (jdk7 needed to compile it)

● ^new:)^

● http://hg.openjdk.java.net/jdk8/build/raw-file/tip/README-builds.html

But well, maintained just sporadically

 But be aware, no jigsaw, no lambda.... (for Fedora we will try.. :o)

http://jdk8.java.net/download.html
http://hg.openjdk.java.net/jdk8/jdk8
http://hg.openjdk.java.net/jdk8/jdk8/jdk
http://hg.openjdk.java.net/jdk8/jdk8/corba
http://hg.openjdk.java.net/jdk8/jdk8/hotspot
http://hg.openjdk.java.net/jdk8/jdk8/jaxp
http://hg.openjdk.java.net/jdk8/jdk8/jaxws
http://hg.openjdk.java.net/jdk8/jdk8/langtools
http://hg.openjdk.java.net/jdk8/build/raw-file/tip/README-builds.html

10

Lambda – where to get it

 http://openjdk.java.net/projects/lambda/
● hg clone http://hg.openjdk.java.net/lambda/defender-prototype

● ant

● hg clone http://hg.openjdk.java.net/lambda/lambda

● sh ./get_source.sh
● Will add additions to corba, jaxp, jaxws, langtools, hotspot,

jdk (rest of jdk is needed too)
● ./configure
● make

 JDK8 bundles: http://jdk8.java.net/lambda/

 Supported by Eclipse HEAD and Netbeans 8, IDEA 12
● http://git.eclipse.org/c/jdt/eclipse.jdt.core.git/log/?h=BETA_JAVA8

http://openjdk.java.net/projects/lambda/
http://hg.openjdk.java.net/lambda/defender-prototype
http://hg.openjdk.java.net/lambda/lambda
http://jdk8.java.net/lambda/
http://git.eclipse.org/c/jdt/eclipse.jdt.core.git/log/?h=BETA_JAVA8

11

Lambda – what it is?
 What is lambda?

 An anonymous function

● Parametrize behavior

● Treat behavior as data

● Provides closure mechanism

 Provides:

● More effective code

● Parallelism

12

Lambda – what it is?

To request some kind of functionality, java is using so called functional
interface. Eg Runnable

public void spamMatchingPersons(Predicate<Person> predicate) {

 List<Person> persons = gatherPersons();

 for (Person p : persons) {

 if (predicate.test(p)) {

 EmailAddress emailAddress = p.getEmailAddress();

 sendEmail(emailAddress);

 }

 }

}

13

Lambda – what it is?
 Declaration of predicates is to verbose

public void spamPossibleAlcoholics() {

 SpamMatchingPersons(new Predicate<Person>() {

 public boolean test(Person p){

 return p.getAge() >= 18;

 }

 });

}

 The only stuff we wanted to say if getAge() >= 18;

14

Lambda – why to change well known pattern?

 Generalization is even more verbose

● By generalized predicates
● spamPersonsOlderThan(n)
● spamPersonsBetween(m,n)
● Some really complicated Predicate

● Soon you are in generics, substituted methods, own interfaces or
whatever...

15

Lambda

public void spamPossibleAlcoholics() {

 SpamMatchingPersons(new Predicate<Person>() {

 public boolean test(Person p){

 return p.getAge() >= 18;

 }

 });

}

 Our first lambda expression (Person p) -> p.getAge() => 18

public void spamPossibleAlcoholics() {

 SpamMatchingPersons((Person p) -> p.getAge() => 18);

}

16

Lambda
 (int x, int y) -> x+y

 () -> 42

 (String s) -> {System.out.println(s)}

 Lambda will enhance many parts of JDK itself

● (String s) -> s.toLowerCase()

 Is still object

● Is translated to the functional interface
● Guessing types during compile time
● But invoked via invoke dynamic (no instance during runtime)

 Should be stateless because of possible parallelism

 Can receive effective final outer local variables

 Jdk8 is going beyond user forEach(()->{})

● Collections framework enhancements
● Bulk data operations
● Iteration delegated into inside of collection

● Parallelism

● Defender methods

● Incorporated into JDK

17

Lambda – Defender methods
 Default (dummy) implementations of interface methods

● Disturbing pureness of interface just a bit
● No global variables
● Stateless

● Can be removed lower in hierarchy (none keyword)

● Support supper

public interface IterateV5{

 public void forEach(Block<T> b)

 default Collections.<T>setForEach;

 public void doMagic() default{

 System.out.println("Default from interface");

 }

 }

Where

class Collections {

 public static<T> void setForEach(Set<T> set,Block<T> block) {

 ...

 }

}

18

Lambda – under the roof

Defender methods – inheritance

 Mess by inheriting methods from multiple ancestors become somehow
possible

 Inheritance algorithms is pretty complicated
● Closest, best type-matched implementation
● One can declare the supper default directly

interface A { void m() default X.a; }

interface B extends A { void m() default X.b; }

interface C extends A { }

abstract class D implements B, C { }

Straight forward to X.b

interface A { void m() default X.a; }

interface B extends A { void m() default X.b; }

interface C extends A { void m() default X.b; }

abstract class D implements B, C { }

Compile time error unless D implements m()

19

Lambda – under the roof
Enhancing collections

 The only reason defender methods were added was to be able to add methods to collection’s interfaces
and to not to destroy backward compatibility and so evolve collections framework

● If defender methods are + or – will be proven in time

● Now all the Collections (and iterator and some more) have stream() method (and some
more)

public interface Stream<T> {
 Stream<T> filter(Predicate<? super T> predicate);
 <R> Stream<R> map(Mapper<? extends R, ? super T> mapper);
 <R> Stream<R> flatMap(FlatMapper<? extends R, ? super T> mapper);
 Stream<T> uniqueElements();
 Stream<T> sorted(Comparator<? super T> comparator);
 Stream<T> cumulate(BinaryOperator<T> operator);
 void forEach(Block<? super T> block);
 Stream<T> tee(Block<? super T> block);
 Stream<T> limit(int n);
 Stream<T> skip(int n);
 <A extends Destination<? super T>> A into(A target);
 Object[] toArray();
 <U> Map<U, Collection<T>> groupBy(Mapper<? extends U, ? super T> classifier);
 <U, W> Map<U, W> reduceBy(Mapper<? extends U, ? super T> classifier,
 Factory<W> baseFactory,
 Combiner<W, W, T> reducer);
 T reduce(T base, BinaryOperator<T> op);
 Optional<T> reduce(BinaryOperator<T> op);
 <U> U fold(Factory<U> baseFactory,
 Combiner<U, U, T> reducer,
 BinaryOperator<U> combiner);
 boolean anyMatch(Predicate<? super T> predicate);
 boolean allMatch(Predicate<? super T> predicate);
 boolean noneMatch(Predicate<? super T> predicate);
 Optional<T> findFirst();
 Optional<T> findAny();
 Stream<T> sequential();
 Stream<T> unordered();
}

someCollection.stream()
 .filter(...)
 .map(...)
 .forEach(...)

public void spamHomePossibleAlcoholics() {
 gatherPersons().stream()
 .filter(p -> p.getAge() >= 18)
 .map(p -> p.getHomeEmailAddress())
 .forEach(emailAddress ->
sendEmail(emailAddress));
}

20

Lambda – under the roof
Parallelism

 Lambda methods can be easily parallelized Collections’ Stream<T> parallelStream() method
and ParallelIterable<T> parallel()

 Interfaces java.util.

● Spliterator<T>

● Splittable<T, S extends Splittable<T, S>>

● ParallelIterable<T> extends Splittable<T, ParallelIterable<T>>

public void spamHomePossibleAlcoholics() {

 gatherPersons().parallelStream()

 .filter(p -> p.getAge() >= 18)

 .map(p -> p.getHomeEmailAddress())

 .forEach(emailAddress -> sendEmail(emailAddress));

}

 can be controlled, but default implementation is good enough

 can be dangerous and slow if done wrong

21

Lambda – under the roof
Parallelism

 Under the roof parallelism
● is nothing more then Fork and Join framework
● spliterator nothing more then better way how abstract and specify the dividing of work
● .paralel() is just simplified and generalized access to it
● Anonymous classes into which the Lambda is compiled are never instantiated by invoked

dynamically

22

Small changes

1)Miscellaneous

2)Javadoc

3)Infrastructure

4)Lang

1)JVM

2)Lambda connected features

5)Networking

6)Cryptography

23

Small Features of OpenJDK8 – Miscellaneous

Locale Matching
 New API to with full implementation of BCP 47 (Internet best current practice for tags for

identifying languages)
 Will provide sorted list with best matching locales for user

Date and Time API
 New (immutable) date,time,calendar API
 Based on JodaTime
 Basic set of extensible calendars
 Performance boost

Charset Implementation Improvements
 Improve maintainability and performance and decrease size
 A lot of work done in 7 (eg loading of system fonts instead of plain-text mapping)

● In 7 some of it just do not work
● New String(byte[]) and string.getBytes()

24

Small Features of OpenJDK8 – Miscellaneous
Adopt unicode CLDR Data for i18n

 Set of new tools
● to convert between individual formats
● To pack them

 Another “java's own format” replaced by standard one

Unicode 6.2
 Adapt to latest (September 2012) unicode

Base64 Encoding/Decoding
 Unify all 5(!) internal implementations to one improved java.util public api

25

Small Features of OpenJDK8 - JavaDoc

DocTree API
 Enable access to syntactic elements of javadoc
 Prepare path for javadoc tools evolution (finally!)

Javadoc to javax.tools
 Starting the new javadoc evolution
 Allowing execution of javadoc via api

● Instead of new process “javadoc”

DocLint
 Detect errors in javadoc in compile time

● Bad syntax
● Bad html
● Bad annotations
● Bad targets
●

26

Small Features of OpenJDK8 - infrastructure

Compact profiles
 Specify profiles, so java aps will not need to load whole JDK

● Eg no-gui app will no longer load swing from rt.jar
 Jigsaw?

● Compact1 java.{io,lang,math,nio,security,text,util,crypto,net}
● Compact2 java.{rmi,sql,transaction,xml}, org.w3c.{sax,dom}
● Compact3 java.{lang,management,naming,security,sql,util,xml,tools},

org.ieft.jgss
● The same packages in profiles have mostly empty intersection of

subpackages

Prepare for modularization
 Provide substitute API for some commonly used private stuff
 Deprecate APIs which will become unavailable after modularization is done

27

Small Features of OpenJDK8 - infrastructure
Autoconf-Based built system

 Introduce autoconf (./configure-style) build setup, refactor the Makefiles to remove
recursion

● Increase build speed radically
● Simplify build-system source code (Makefiles, etc.)
● Simplify work for developers
● Get exact and reproducible build output
● Update the Makefile structure
● Add parallel Java compilation support
● Make Java builds incremental

 Result of M4 compilation (generated ./configure script) will be checked to repository

Launch JavaFX applications
 Enable commandline java command to launch also JavaFX applications directly

Small VM
 Support the creation of a small VM that is no larger than 3MB.

● Make necessary modifications so that we can optionally build a small VM no larger
than 3MB. (now client and server VMs are around 6 and 9MB)

● Allowing some features to be excluded at build time, and by optimizing the C++
compiled code for space when possible.

● A performance degradation with the small VM of up to 5% is acceptable.
● There is no plan to retain full capabilities
● There is no plan to make functionality optional at runtime.

28

Small Features of OpenJDK8 – Lang

Annotation on Java Types
 Now annotations are allowed for

● Classes
● methods

 @Interval(min=10,max 20) int sizeOfSquirel;
● Easy pluggable data checkers on top of it

Generalised Target-Type Infrence
 Remove burden of redundant type declaration
 Eg from

● String s = List.<String>nill().head();
 To

● String s = List.nill().head();

Access to Parameter Names at Runtime
 Get rid of custom @ParameterName
 Java have access to all names except parameters' ones

● Smallest change with impact to byte code

29

Small Features of OpenJDK8 – Lang

Repeating annotations
 Now annotations are allowed for language member just oncetime per annotation
 This should allow multiple same-name annotations

javax.lang.model backed by reflection
 Move the responsibility from javac to public api

● access and process reflective information about loaded classes by this API

Jdbc 4.2
 Just minor changes

Reduce Core-Library Memory Usage
 Reducing heap size occupied by core libraries without lost of performance
 Candidates:

● Reduce base Object size
● Disable reflection compiler
● Direct memory reductions found by heap analyze

30

Small Features of OpenJDK8 – Lang - JVM

Compiler control
 Unify all wide-spread compiler flags and settings to one well documented common way

● Affect both C1 and C2
● Possibility to change this settings in runtime

Remove permanent generation
 Part of jrockit and hotspot conversion

● Jrockit customers do not need to tune permanent generation
● There should be no need for it in JVM too

G1 GC: Reduce need for full GCs
 Enhance G1 so that it does not r4ely on full GCs to perform class unloading or any other

critical operation
● Shorter pauses during GC
● There should be no need for it in JVM too

 Dropped 14.1.2013

Fence Intrinsic
 Adding memory-ordering intrinsic to sun.misc.Unsafe as known from C11/C++11 on JVM

level
● void loadFence()
● void storeFence()
● void fullFence()

 Maybe public in java.util.concurent later

31

Small Features of OpenJDK8 – Lang - JVM

Limited doPrivlidged
 Enable asserted code to run without full access-control stack walk to check for

permissions
 Possible security impact?

Concurrency Updates
 Scalable updatable variables, cache-oriented enhancements to the

● ConcurrentHashMap API
● ForkJoinPool improvements,
● additional Lock and Future classes and better support for software transactional

memory (STM) frameworks(?)

Limited doPrivileged
 Enable asserted code to run without full access-control stack walk to check for

permissions
 Possible security impact?

Reduce Class Metadata Footprint
 Reduce HotSpot’s class metadata memory footprint in order to improve performance on

small devices
 Many manual actions

● Reducing offsets and pointers
● Squeeze what can be squeezed (eg 33b to 32b instead of 64 :)
● Put away rarely used fields

 Better usage of automated optimization

32

Small Features of OpenJDK8 – Lang - JVM

Enhanced Verification Errors
 Bytecode is verified in JVM, but in case of failure exceptions are to vague or misleading
 Although rare, those will be enhanced

Reduce Cache Contention on Specified Fields
 Find way how to specify fields which can spread across multiple cores or share lines in

caches
● ..and avoid it

 By aligning the fields
● By Adding padding before and/or after

 Performance
 Parallelisation

33

Small Features of OpenJDK8 – Lang -
Lambda connected features

Parallel Array sorting
 New methods to Arrays class like

● public static parallelSort
 Dependence and similarity on Lambda with Fork and Join framework

● Implementation based on ParallelArray framework

 Bulk data operations (filter, map, reduce)

 Lambda expressions themselves

 Integrate Lambda into Core Libraries of JDK
● where useful (and possible)

 Collections Enhancements from Third-Party Libraries
 Goal si not to eliminate v3rd parties, but to learn form them and use what can be used
 Dropped 14.1.2013

Lambda-Form representation of Method Handles
 Improve performance, quality and portability of method handles and invoke dynamic

● Reduce assembly code in jvm
● Reduce native calls

34

Small Features of OpenJDK8 – Networking

TLS Server Name (SNI) Extension
 TLS is is extension fore more flexible and secure virtual-machine/server/hosting

infrastructures based on SSL rt
 Already supported by most major

● Browsers
● Servers

New HTTP Client
● Current URLConnection done with Legacy (ftp, gopher) protocols in mind
● Goal si to made new extensible Api
● Based on NIO
● Keep EE in mind
● Dropped 14.1.2013

Network Interference Aliases Events and Defaults
 Make java SE to work on devices with multiple network (or hierarchical) interfaces

● Listen to changes of the devices configuration
● Select device

35

Small Features of OpenJDK8 – Cryptography

MS-SFU Kerberos 5 Extension
● Specified since 2003
● Client-server and server-client delegation

Stronger Algorithms for Password-Based Encryption
● Lot of current algorithms i in JDK are legacy

● DES
● RC2
● ...

● Need to add new ones
● SHA-2
● PBE

Configurable Secure Random-Number generation
● Currently

● Mix of blocking/not-blocking system calls
● No configureability and wrong documentation
● On linux reading of /dev/random and is blocking until enough entrophy

● /dev/urandom can provide good randomnes without blockin
● Except /dev/* also custom algorithms
● Both runtime and deplyment configuration

● sr = New SecureRandom(TYPE_OF_QUALITY)
● java.security policy

36

Small Features of OpenJDK8 – Cryptography

Enhance the Certificate Revocation-Checking API
● java.security.cert API to be enhanced

● Current api is pass/fail only
● New API should be independently checkin each step and have callbacks and

fallbacks

Various suites
 AEAD Cipher suite
 NSA Suite B
 SHA-224
 PKCS#11 crypto provider for Windwos64b (finally!)

Overhaul JKS-JCEKS-PKCS12 Keystore
● Migrate current keystore format to standard PKCS#12
● Update java tools
● Update API
● Another “java's own format” replaced by standard one

37

Project Jigsaw

 Postponed to JDK9– modularisation of Java platform
 Continuous integration into JDK7/8 via project penrose

(approved Jan/Feb 2012)
 Current JDK is monolithic and huge (more then 100MB)

● “Hello world” in Maven can have up to 4MB
 Modules will replace class path (unix and Maven like

approach)
● Eg. by Maven - Build-time, install-time, test-time and

run-time
● Eg. from packages – shared versions and modules
● Inspired and compatible with OSGI

 Modularization of native-binary parts of JDK is not sure even for
JDK9 :(

http://mail.openjdk.java.net/pipermail/discuss/2012-January/002320.html

38

Project Jigsaw
 What it should solve:

● JAR hell
● Too many transitive references
● Dependence on multiple versions

● Unmanaged Dependencies (only via
classloaders hierarchy) => ServiceLoader API

● Stomping – name clash in jars
● Use of private code – no longer possible?

39

Project Jigsaw
 Platform fragmentation

● Will allow unification of SE x ME (and EE?)
● There are complicated license issues for EE

● No more rt.jar (separate jars for separate technologies –
swing, xml, language...)

● Startup performance
● (pre)loading only what needed (pre-downloading?)
● Already JDK6 have lazy loading of parts of RT (but still whole

RT must be available)

● Integration with native packaging systems
● Rpm/deb... inspiration <-> compatibility

● Windows will get shorten? O:)
● Support for better cooperation with native modules also in

JDK9?

● Package granularity
● Libraries consisting from more and more jars?
● Can lead to “new” “modules hell” ?

(lot of work done to not so)

● What is module?

40

Project Jigsaw
 Descriptors are plain-text .java files “inside” module/jar

 Module declaration:

module a.b @ 1.0 {

 requires c.d @ /* Use v2 or above */ >= 2.0 ;

 requires service e.f;

 provides g.h @ 4.0;

 provides service i.j with k.l;

 exports m.n;

 permits o.p;

 class cc.dd;

 view a.b.c {

 provides q.r @ 1.0;

 provides service s.t with u.v;

 exports w.x;

 permits y.z;

 class aa.bb;

 }

}

Maven --->
(pom compatibility)

---->jar
 (classical,
 classpath re-usable jar)

---->jmod---->jmod

---->rpm

---->jmod

---->deb
---->war,ear (JDK 9?)

41

Project Jigsaw - build
 hg clone http://hg.openjdk.java.net/jigsaw/jigsaw
 cd jigsaw

 bash get_sources.sh

 ./configure

 make all

42

Project Jigsaw - build
 Result

● build/linux-{i586 amd64}/jdk-module-image”.

 In bin are new tools
● jmod
● jpkg

 The ”lib/modules”
● folder contains a myriad of modules.
● The JDK is no longer this huge ”rt.jar” with a gravity of JARs

around
● it is now a set of modules.
● Each module contains (except classes)

● index
● metadata

43

Project Jigsaw – first module
 mkdir -p sources/fact/fact

 mkdir modules

 fact/Factorial.java

package fact;

public class Factorial {

 public static int factorial(int n) {

 if (n <= 0) { return 1; }

 else { return n * factorial(n - 1); }

 }

}

 fact/module-info.java

module fact @1.0 {

 exports fact}

 javac -d modules -modulepath modules -sourcepath sources \

 sources/fact/module-info.java \

 sources/fact/fact/Factorial.java

44

Project Jigsaw – first dependent module
 hello/Main.java

package hello;

import static fact.Factorial.factorial;

public class Main {

 public static void main(String... args) {

 System.out.println(factorial(10));

 }

}

 hello/module-info.java

module hello @1.0 {

 requires fact @1.0;

 class hello.Main;

}

 javac -d modules -modulepath modules -sourcepath sources \

 sources/fact/* sources/hello/*

 java -m hello

45

Project Jigsaw – deploy and run
 jmod create -L repo

 jmod install modules hello fact -L repo
● find repo/

● repo/

● repo/fact

● repo/fact/1.0

● repo/fact/1.0/index

● repo/fact/1.0/info

● repo/fact/1.0/classes

● repo/%jigsaw-library

● repo/hello

● repo/hello/1.0

● repo/hello/1.0/config

● repo/hello/1.0/index

● repo/hello/1.0/info

● repo/hello/1.0/classes

 java -L repo -m hello
● 3628800

 Modules can be used also directly from modules dir where were built

46

Project Jigsaw – deploy and run
 Make jmod packages

● jpkg -m modules/fact jmod fact
● jpkg -m modules/hello jmod hello

● fact@1.0.jmod hello@1.0.jmod

 Make linux packages
● jpkg -m modules/ deb hello
● jpkg -m modules/ rpm fact

● fact_1.0_x86_64.deb hello-1.0.x86_64.rpm

 Install module back from a jmod package
● jmod install -L repo hello@1.0.jmod
● java -L repo -m hello

● 3628800

47

Project Jigsaw – little bit under the hood
 Declaration

module foo{}

module foo @1.0 {}
● Version is optional
● Name is qualified java identifier
● No annotations

 Exports

module foo{

exports foo;

}
● Exports all public types in foo, but not in subpackages
● Name convention

module foo{

exports foo;

exports foo.bar;

exports foo.baz;

}
● No private members export ever!

48

Project Jigsaw – little bit under the hood
 Requires

module bar{

requires foo;

}
● foo and bar will have different classloaders
● Do not export foo's classes
● Optional version constraints

module bar{

requires foopa @ >=1.0;

requires foot @ <2.3a;

}

 Re-exports

module bar{

requires public foo;

}
● Reexports foo's classes (otherwise same)

49

Project Jigsaw – little bit under the hood
 Services

module bar{

 provides service servers.Server with myServers.MyServerImpl;

}
● Provides implementation of service

module bar{

 requires service servers.Server

}
● Is requiring implementation(s) of service
● will got myServers.MyServerImpl in this case

● Enhanced ServiceLoader API with possibility of select the impl
 Services creation: Class<Foo> serviceInterface = ...;

 ClassLoader serviceConsumer = ...;

 // Lazy, No service instances are instantiated

 Iterable<Foo> services = ServiceLoader.load(serviceInterface, serviceConsumer);

 // Instantiation occurs on each call to Iterator.next()

 for (Foo service : services) { if (service.isCapableOf(...)) {

 return service;}}

 return new DefaultFoo();

50

Project Jigsaw – little bit under the hood
 Permits

module foopa{

permits bar;

}
● foopa can be required only by bar
● Otherwise same

 Local dependence

module bar{

requires local foopa;

}
● foopa must explicitly permits bar
● foo and bar will have same classloaders

● The only case of shared classlaoder
● Multi-module packages

 Optional dependence

module foopa2{

requires optional bar2;

}

● Must be ready to work without it

51

Project Jigsaw – little bit under the hood

 Entry point
module foo{

class foo.Main;
}

● Alternative to manifest entry with main method
● Java -m foo

 Base module
Jdk itself - java.base
If module is not requiring exact version, then platform default is
added

52

Project Jigsaw – little bit under the hood
 Aliases

module foo{

provides bar;

}

● Renaming of bar?

● Necessary for renaming of known packages to new modules

 view

module bar{

requires foo;

exports bar

view bar.internal {

permits baz;

exports bar.private;

} view cat {

class org.foo.Cat

} view ls{

class org.foo.List

}

}

 java -m cat x java -m ls

53

Project Jigsaw – modular jdk

 Aliased by java.base

54

Project Jigsaw – classlaoders

 Class.getClassLoader() will never be null
● There will be classlaoder(s) for java.base
● Replacement for bootclassloader

 Each module will have its own classlaoder
● Except multi-module package

 No possibility to access private classes of other
modules

● Some hackish way to get its classlaoder and
then access via some new reflection tricks??

55

Project Jigsaw – byte code

 The module-info.java is compiled into module-
info.class

 New ClassFile.access_flag ACC_MODULE (0x80000)
added on byte code level

 Major/minor version limitation (>= 53.0, jdk 9)
 No implicit reexports – just expanded
 Also views are expanded
 Dependencies, exports and services are tables with

indexes to constant pool

56

Conclusion

 Oracle have fulfill some of his promises
● Community is taken care about
● Lambda is going in
● Most of the small changes are going in

 Dropping of jigsaw in October is sad but probably
worthy

● Modularisation of binary parts?
● Convergence of java ME?

 Dropping of some of some in January 2013 ..
● Well smells like problems

 At least it is still evolution and not revolution

57

Questions?
 http://openjdk.java.net/projects/jdk8/

 http://wiki.eclipse.org/JDT_Core/Java8

 http://dharrigan.com/2011/11/20/building-jdk8-with-lambda-support/

 http://openjdk.java.net/projects/jigsaw/doc/module-class-loading.pdf

 http://cr.openjdk.java.net/~briangoetz/lambda/Defender%20Methods%20v4.pdf

 https://docs.google.com/file/d/0BxQTeZmiQCClcEVtOXdqZ25Zem8/edit

 https://wiki.engr.illinois.edu/download/attachments/202146190/L7_ParallelArrary.pdf

 http://openjdk.java.net/projects/jdk8/features

 http://openjdk.java.net/jeps/0 (all the JEPs of Small features)

 http://julien.ponge.info/notes/building-openjdk8-with-jigsaw/

 http://openjdk.java.net/projects/jigsaw/

 Http://openjdk.java.net/projects/jigsaw/doc/openjdk-jigsaw-modular-services.pdf

Thank you for your attention!

http://openjdk.java.net/projects/jdk8/
http://wiki.eclipse.org/JDT_Core/Java8
http://dharrigan.com/2011/11/20/building-jdk8-with-lambda-support/
http://openjdk.java.net/projects/jigsaw/doc/module-class-loading.pdf
http://cr.openjdk.java.net/~briangoetz/lambda/Defender%20Methods%20v4.pdf
https://docs.google.com/file/d/0BxQTeZmiQCClcEVtOXdqZ25Zem8/edit
https://wiki.engr.illinois.edu/download/attachments/202146190/L7_ParallelArrary.pdf
http://openjdk.java.net/projects/jdk8/features
http://openjdk.java.net/jeps/0
http://julien.ponge.info/notes/building-openjdk8-with-jigsaw/
http://openjdk.java.net/projects/jigsaw/
http://openjdk.java.net/projects/jigsaw/doc/openjdk-jigsaw-modular-services.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

