
Path to OpenJDK9 and beyond
DevConf, Feb 2014

Jiří Vaněk

Path to OpenJDK9 and beyond
DevConf, Feb 2014

 Bit of history
 JDK8
 Features, jeps, projects and icedtea
 JDK9

3

Index
1) One page of history

2) JDK8

a) Overview

b) Main features

I. Lambda

II. Various fulfilled and postponed jeps

3) Projects, jeps and icedtea

a) Crucial differences

b) Icedtea

4) JDK9

a) Jeps

b) Projects

I. Ports

II. nashorn

III. grail

IV. OpenjFX

V. Sumatra

5) Non-projects

1) IcedTea-Web

2) Thermostat

6) Jigsaw

a) Why

b) Where

c) How

d) Under the roof

4

One page of history
devconf 2012 - http://rvokal.fedorapeople.org/devconf2012/jvanek-jdk8.pdf

1992 - started at Sun labs as project Oak

1996 - Version 1 publicly released

Cca 1998 - plugin, JIT, GNU classpath

Cca 2001 - HotSpot, javaws

Cca 2006 - JDK6, OpenJDK, IcedTea,

Cca 2009 - acquisition by Oracle, IcedTea-Web

Cca 2011 - OpenJDK7,

 - merging Of IcedTea to OpenJDK, jigsaw to JDK9

Middle of 2013 – should beOpenJDK8....

 - December 2013 forked JDK9

March 2014 Release of OpenJDK8 ?

http://rvokal.fedorapeople.org/devconf2012/jvanek-jdk8.pdf

5

Well.. two of them

 OpenJDK7 – released in time, July 2011
● JVM support for dynamic languages (invoke dynamic),
● Small language changes (grouped under a project named Coin):
● Concurrency utilities (fork/join framework)
● New file I/O library
● Care is taken of community
● It was conservative change at the end!

6

OpenJDK8

 JDK7 released in time (mid 2011)
● Some (mayor) features dropped after development freeze
● Very conservative
● Nearly in time;)

 This lead to set JDK lifecycle to two years release cycle
● Some doubts in community
● Dropping features during 2013
● Several delaying
● Errors found in RC

● 18.3 2014?
● Cloned form 7 2012/04/26

 Its better then it look likes

7

OpenJDK8 – sources and build
 Bundles available at http://jdk8.java.net/download.html,

 Packed in most distros

 Or you can get bleeding edge by mercurial:

● hg clone http://hg.openjdk.java.net/jdk8/jdk8
● + sh ./get_source.sh

● Or hg clone http://hg.openjdk.java.net/jdk8/jdk8/
{jdk,corba,hotspot,jaxp, jaxws, langtools,nashorn}

● All mayor projects already merged in

● ./configure; make
● Usage of autotools was greate mprovement in jdk8
● (jdk7 needed to compile it)

● http://hg.openjdk.java.net/jdk8/build/raw-file/tip/README-builds.html

 For updates branches you can use

● http://hg.openjdk.java.net/jdk8u/jdk8u

http://jdk8.java.net/download.html
http://hg.openjdk.java.net/jdk8/jdk8
http://hg.openjdk.java.net/jdk8/jdk8/
http://hg.openjdk.java.net/jdk8/build/raw-file/tip/README-builds.html
file:///home/jvanek/Documents/%20http://hg.openjdk.java.net/jdk8u/jdk8u

8

OpenJDK8
 Conservative release again?

 Project Lambda

 Rest of project coin

 NIO2 (connected with lambda!)

 New build system

 Various (full)filled jeps

● Not all made it in!

● But many are going to be backported to 7

9

Lambda – what it is?
 What is lambda?

● Already reached documentation

● http://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpression
s.html

 An anonymous function

● Parametrize behavior

● Treat behavior as data

● Provides closure mechanism

 Provides:

● More effective code

● Parallelism

http://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
http://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html

10

Lambda
 -> operator to declare lamdas

● (int x, int y) -> x+y

● () -> 42

● Never instantiated (invoke dynamic)

 Defender methods in interfaces

 Collections have stream method, which provide access to lamdas

● filter

● map

● ForEach

● Which works with closures

 Parallelism from jdk itself

● Spliterator

● http://download.java.net/jdk8/docs/api/java/util/Spliterator.html

 Much more in my last year presentation ;)

● http://jvanek.fedorapeople.org/underTheRoofOfJDK8.pdf

http://download.java.net/jdk8/docs/api/java/util/Spliterator.html
http://jvanek.fedorapeople.org/underTheRoofOfJDK8.pdf

11

Small Features of OpenJDK8 – Miscellaneous

Date and Time API
 Based on JodaTime

Base64 Encoding/Decoding
 Unify all 5(!) internal implementations to one improved java.util public api

Limited doPrivlidged
 Enable asserted code to run without full access-control stack walk to check for

permissions
 Possible security impact?

Concurrency Updates
 Scalable updatable variables, cache-oriented enhancements to the

● ConcurrentHashMap API, ForkJoinPool improvements,

Network Interference Aliases Events and Defaults
 Make java SE to work on devices with multiple network (or hierarchical) interfaces

● Listen to changes of the devices configuration
● Select device

12

Small Features of OpenJDK8 - JavaDoc

DocTree API
 Enable access to syntactic elements of javadoc

Javadoc to javax.tools
 Allowing execution of javadoc via api

● Instead of new process “javadoc”

DocLint
 Detect errors in javadoc in compile time

● Bad syntax, Bad html, Bad annotations, Bad targets,

13

Small Features of OpenJDK8 - built
Autoconf-Based built system

 Introduce autoconf (./configure-style) build setup, refactor the Makefiles to remove
recursion

● Increase build speed radically
● Simplify build-system source code (Makefiles, etc.)
● Simplify work for developers

 Result of M4 compilation (generated ./configure script) will be checked to repository

Smal VM
 Support the creation of a small VM that is no larger than 3MB.

● Make necessary modifications so that we can optionally build a small VM no larger
than 3MB. (now client and server VMs are around 6 and 9MB)

Compact profiles
 Specify profiles, so java aps will not need to load whole JDK

● Eg no-gui app will no longer load swing from rt.jar
● Already doen in some distributions

 Jigsaw?
● Compact1 java.{io,lang,math,nio,security,text,util,crypto,net}
● Compact2 java.{rmi,sql,transaction,xml}, org.w3c.{sax,dom}
● Compact3 java.{lang,management,naming,security,sql,util,xml,tools,

org.ieft.jgss}
● The same packages in profiles have mostly empty intersection of

subpackages

14

Small Features of OpenJDK8 – Lang

Annotation on Java Types
 Now annotations are allowed for

● Classes
● methods

 Access to Parameter Names at Runtime
 Java have access to all names except parameters' ones

Repeating annotations
 Now annotations are allowed for language member just once time per annotation

Parallel Array sorting and another Lambda collected features
 New methods to Arrays class like

● public static parallelSort
 Dependence and similarity on Lambda with Fork and Join framework

● Implementation based on ParallelArray framework

15

Small Features of OpenJDK8 – Lang - JVM

Remove permanent generation
 Part of jrockit and hotspot conversion

● Jrockit customers do not need to tune permanent generation
● There should be no need for it in JVM too

Reduce Core-Library Memory Usage
 Reducing heap size occupied by core libraries without lost of performance

● Eg Reduce base Object size

Reduce Class Metadata Footprint
 Reduce HotSpot’s class metadata memory footprint in order to improve performance on

small devices
● Many manual actions
● Better usage of automated optimization

16

Small Features of OpenJDK8 – Lang - JVM

Enhanced Verification Errors
 Bytecode is verified in JVM, but in case of failure exceptions are to vague or misleading
 Although rare, those will be enhanced

Reduce Cache Contention on Specified Fields
 Find way how to specify fields which can spread across multiple cores or share lines in

caches
 By aligning the fields

17

Small Features of OpenJDK8 – Cryptography

Stronger Algorithms for Password-Based Encryption
● Lot of current algorithms i in JDK are legacy

● DES,RC2
● Need to add new ones

● SHA-2, PBE

Configurable Secure Random-Number generation
● /dev/random and is blocking until enough entrophy
● /dev/urandom can provide good randomnes without blockin
● Except /dev/* also custom algorithms

Various suites
 AEAD Cipher suite
 NSA Suite B
 SHA-224
 PKCS#11 crypto provider for Windwos64b (finally!)

Overhaul JKS-JCEKS-PKCS12 Keystore
● Migrate current keystore format to standard PKCS#12

18

Small Features of OpenJDK8 – dropped features

Collections Enhancements from Third-Party Libraries
 Goal si not to eliminate v3rd parties, but to learn form them and use what can be used
 Dropped 14.1.2013

G1 GC: Reduce need for full GCs
 Enhance G1 so that it does not r4ely on full GCs to perform class unloading or any other

critical operation
● Shorter pauses during GC
● There should be no need for it in JVM too

 Dropped 14.1.2013

New HTTP Client
● Current URLConnection done with Legacy (ftp, gopher) protocols in mind
● Goal si to made new extensible Api
● Based on NIO
● Keep EE in mind
● Dropped 14.1.2013

19

Projects, Jeps and IcedTea
 Projects

● Larger then JEPs

● Are voted for

● Continuous

● work over JDKs

● transition across versions

● (continuous) Merging

● Everybody can propose - http://openjdk.java.net/projects/

● Icedtea... quite a different project

● Updates - even more different project

● Ports

● Needs to be merged

● May never ends in JDK

 Jeps

● Smaller features (Jdk Enchancement Propose)

● Are decided

● Are going tobe in JDK

● Are about to be completed and done

● Everybody can propose - http://openjdk.java.net/jeps/1

● Are strictly targeted

● Are done in live branches

20

JDK9
 Forked December 2013

● Not much done yet...
● JEP acceptance in progress
● Many projects already did merging

● Into jdk7
● Into jdk9

21

JEPs – all are canidates

 Process API Updates - core/libs
● Improve the API for controlling and managing operating

system processes

 Collections Enhancements from Third-Party Libraries - core/libs
● Evolve the Java Collections Framework by adopting common

and popular functionality from third-party libraries.
● 8?

 New HTTP Client – core/net
● Replace legacy HttpURLConnection
● 8?

 Additional Unicode Constructs for Regular Expressions –
core/libs

● Unicoded regexps without pain

 Network Interface Aliases, Events, and Defaults – core/net
● allow Java SE to work well in devices with multiple network

interface types (e.g., both wifi and cellular)
● 8?

22

JEPs – all are canidates

 More-prompt finalization – vm/gc
● Improve the promptness of finalization by use of multiple

finalizer threads and/or aggressive management of the
finalizer queue

 Increase the Client VM's Default Heap Size – vm/gc
● Increase the default maximum heap size of the client JVM so

that most client applications can run without tuning
● :)

 Improve Contended Locking – vm/rt
● Significantly improve contended-locking performance in

HotSpot.

 Reduce GC Latency for Large Heaps – vm/gc
● Improve the performance of applications that require large

heaps, of up to 32GB, by reducing garbage-collector latency
● Shenandonah

23

JEPs – all are canidates

 Cache Compiled Code – vm
● Save and reuse compiled native code from previous runs in

order to improve the startup time of large Java applications

 Improve Fatal Error Logs – vm
● Improve HotSpot’s fatal error logs (hs_err files) by including

additional historical information and also some context-
dependent information

 Crypto Operations with Network HSMs - vm
● improve support for Hardware Security Modules

 G1 GC: Reduce need for full Gcs – vm
● Enhance G1 so that it does not rely on full GCs to perform

class unloading or any other critical operations.
● 8?

 Unified JVM Logging – vm
● Introduce a common logging system for all components of

the JVM.

24

JEPs – all are canidates

 G1 GC: NUMA-Aware Allocation – vm/gc
● And

 Enable NUMA Mode by Default When Appropriate – vm
● To improve the out-of-the-box performance on non-uniform

memory accesses

 Compiler Control – vm/comp
● Add the possibility of changing the option sets during run

time.

 Policy for Retiring javac -source and -target Options – core/lang
● In JDK 9 and going forward, javac will use a “one + three

back” policy of supported source and target options
● process class files of all previous JDKs, going back to

version 45.3 class files generated by JDK 1.0.2, which
first shipped in 1996

 Collection Literals – core/lang
● Arrays support for lists
● Eg List<Integer> list = #[1, 2, 3];

25

JEPs – all are canidates

 Serialization 2.0 – core/lang
● Research/posted
● Current approach

● Security issues
● Underestimate objects

 PowerPC/AIX Port
● Funded!
● Add Linux/PowerPC64 and AIX/PowerPC64 to the set of

supported OpenJDK platforms.

 Shenandoah: An Ultra-Low-Pause-Time Garbage Collector –
vm/gc

● Reduce GC pause times on extremely large heaps by doing
evacuation work concurrently with Java threads and making
pause times independent of heap size.

● with a heap of 20GB or less or if you are running with fewer
than eight cores, you are probably better off with one of the
current GC algorithms.

26

Projects - icedtea
 Actually wrapping project around jdk

● All Linux distros have java wrapped by IcedTea

 Was founded in 2007 by RedHat as reaction to unhappy state of
OpenJDK6

● To make OpenJDK buildable without proprietary blobs
● Used GNU Classpath, rewrote proprietary blobs
● To be usable in pure-opensource projects as eg

Fedora, Ubuntu, Debian, OpenSuse...
● Make it easily build-able
● Support alternative JVMS (Zero,Shark, CACAO, ...)
● Support for new plugin
● Make OpenJDK easily extensible and fixable
● Serve as bridge between community and upstream

27

 The experiment is successful:

● Bootstrap with GNU Classpath/OpenJDK

● Support for multiple architectures via alternative VM (Zero,Shark,
CACAO, JamVM...)

● Huge number of excellent patches (often Linux-ones)

● Members of IcedTea have pushed numerous patches to upstream

● It is really easy to make contributions

 Rewriting of plugin/Javaws lead to IcedTea-Web open-project

 VisualVM profiling and debugging tool is replaced by JVMTI and Thermostat (and
some more tools from JBoss family, eg. Byteman)

Projects - icedtea

28

Projects - icedtea
 However

● It seems that IcedTea is no longer needed

 Jdk6 (for which it was designed) is dead

● JDK7, although do exists only thanks to icedtea is spread as icedtea

 OpenJDK build itself cleanly

 IcedTea-Web is separate “project”

 Thermostat is separate “project”

 Most IcedTea “alternative ways” are turned into regular projects

 Its quite easy and strigt forward to contribute

● Mostly unwillingness of few individuals is keeping icedtea alive

 Icedtea do not have jeps and projects

29

JDK 9 projects
 Shenadonah

● Previous lecture

 Nashorn
● Rewritten javascript engine
● Replaced rhino

 Sumatra
● Api for using GPU

 Jigsaw + penrose
● Penrose is tracking jigsaw and osgi compatibility

 Development changes
● Handling of updates
● Handling of community :)

30

JDK 9 projects
● ports

 Macosx

 Ppc64

 Aarch64
● Aarch64 simulator

● crosscompialtion
● Aarch64 virtual machine

 OpenJFX
● Javafx opensource

 Coin
● Remaining tasks from openjdk8

 Graal
● Java compiler written in java

31

JDK 9 projects - ports
 Zero

● Long time living not-a-port
● Really running everywhere where gcc is

● Why ports?
● Zero is C/C++ template VM
● Much slower then assembly language tempaltes
● Shark – zero's jit – is long-term broken

 Macosx

● License issues with parts of JDK
● Awt

● Many many different parts in MacOS

 Ppc64

● IBM's iniciative

● Real hotspot assembly templates

 Aarch64

● Aarch64 simulator used before the actuall harware protoypes
● http://hg.code.sourceforge.net/p/smallaarch64sim
● Cross compilation

● Later Aarch64 virtual machine, and later real HW. Always new bugs :)

● Real hotspot assembly templates

 BDS, Hiku, MIPS....

32

JDK 9 projects - Nashorn
 lightweight high-performance JavaScript runtime in Java with a native

JVM.

 This Project intends to enable Java developers embedding of JavaScript
in Java applications via JSR-223

 standing JavaScript applications using the jrunscript command-line
tool.

 utilize the MethodHandles and InvokeDynamic

33

JDK 9 projects - Sumatra
 Take advantage of

● graphics processing units (GPUs)
● accelerated processing units (APUs)

 whether they are discrete devices or integrated with a CPU--to improve
performance.

 leveraging the new Java 8 Lambda language

 provide guidance for other JVM-hosted languages such as
JavaScript/Nashorn, Scala and JRuby.

34

JDK 9 projects - OpenJFX
 Oracle announced that it would donate the JavaFX toolkit to the open

source community and by November 2011 the OpenJDK Community
had agreed to take it on.

 The project intends to file a JSR in the Java SE 9 timeframe and hopes
to eventually be part of the JDK proper.

 The goal of OpenJFX is to build the next-generation Java client toolkit.

 Finally get rid of java-plugin
● IcedTea-Web?

35

JDK 9 projects - Grail

a quest for the JVM to leverage its own J

 to expose VM functionality via Java APIs.
● write in Java a dynamic compiler and interpreter for a

language runtime
● highly extensible dynamic compiler uses features of Java
●

 Multi-language interpreter framework
● Java will be just one member in the family of supported

languages.

 Performance

36

IcedTea-Web
 Is not an project

● Hosted on classpath.org
● Initiated as part of IcdTea

 Only known opensource java-plugin
● Awt-less plugin for macos and mobile devices comming from

comunity

 Only known opensource and alive javaws client
● Ligting tallk!

 Is trying to be project
● Icedtea only patches

● Making some private stuff protected
● Upstreaming unsuccessful
● Jdk9 – new api for plugins?
● Jdk8 the original patch?

37

Thermostat
 Is not an project

● Again hosted on classpath.org

 Labs yesterday!

 Monitoring and instrumentation tool for the Hotspot like JVMs, with
support for monitoring multiple JVM instances on multiple hosts,
optionally in a cloud environment.

● We want a tool that allows users of IcedTea/OpenJDK to
monitor running JVMs, especially remote JVMs.

● We have openjdk sources
● We have kernel sources
● ...?

 Replacement and improvement for
● VisualVM
● JConsole

 pluginable

 eclipse plugin

38

Project Jigsaw

 modularisation of Java platform
 Continuous integration with OSGI via project penrose

(approved Jan/Feb 2012)
 Current JDK is monolithic and huge (more then 100MB)

● “Hello world” in Maven can have up to 4MB
 Modules will replace class path (unix and Maven like

approach)
● Eg. by Maven - Build-time, install-time, test-time and

run-time
● Eg. from packages – shared versions and modules
● Inspired and compatible with OSGI

 Modularization of native-binary parts of JDK is not sure even for
JDK9 :(

http://mail.openjdk.java.net/pipermail/discuss/2012-January/002320.html

39

Project Jigsaw
 What it should solve:

● JAR hell
● Too many transitive references
● Dependence on multiple versions

● Unmanaged Dependencies (only via
classloaders hierarchy) => ServiceLoader API

● Stomping – name clash in jars
● Use of private code – no longer possible?

40

Project Jigsaw
 Platform fragmentation

● Will allow unification of SE x ME (and EE?)
● There are complicated license issues for EE

● No more rt.jar (separate jars for separate technologies –
swing, xml, language...)

● Startup performance
● (pre)loading only what needed (pre-downloading?)
● Already JDK6 have lazy loading of parts of RT (but still whole

RT must be available)

● Integration with native packaging systems
● Rpm/deb... inspiration <-> compatibility

● Windows will get shorten? O:)
● Support for better cooperation with native modules also in

JDK9?

● Package granularity
● Libraries consisting from more and more jars?
● Can lead to “new” “modules hell” ?

(lot of work done to not so)

● What is module?

41

Project Jigsaw
 Descriptors are plain-text .java files “inside” module/jar

 Module declaration:

module a.b @ 1.0 {

 requires c.d @ /* Use v2 or above */ >= 2.0 ;

 requires service e.f;

 provides g.h @ 4.0;

 provides service i.j with k.l;

 exports m.n;

 permits o.p;

 class cc.dd;

 view a.b.c {

 provides q.r @ 1.0;

 provides service s.t with u.v;

 exports w.x;

 permits y.z;

 class aa.bb;

 }

}

Maven --->
(pom compatibility)

---->jar
 (classical,
 classpath re-usable jar)

---->jmod---->jmod

---->rpm

---->jmod

---->deb
---->war,ear (JDK 9?)

42

Project Jigsaw - build

 hg clone http://hg.openjdk.java.net/jigsaw/jigsaw
 cd jigsaw

 bash get_sources.sh

 ./configure

 make all

43

Project Jigsaw - build
 Result

● build/linux-{i586 amd64}/jdk-module-image”.

 In bin are new tools
● jmod
● jpkg

 The ”lib/modules”
● folder contains a myriad of modules.
● The JDK is no longer this huge ”rt.jar” with a gravity of JARs

around
● it is now a set of modules.
● Each module contains (except classes)

● index
● metadata

44

Project Jigsaw – first module
 mkdir -p sources/fact/fact

 mkdir modules

 fact/Factorial.java

package fact;

public class Factorial {

 public static int factorial(int n) {

 if (n <= 0) { return 1; }

 else { return n * factorial(n - 1); }

 }

}

 fact/module-info.java

module fact @1.0 {

 exports fact}

 javac -d modules -modulepath modules -sourcepath sources \

 sources/fact/module-info.java \

 sources/fact/fact/Factorial.java

45

Project Jigsaw – first dependent module
 hello/Main.java

package hello;

import static fact.Factorial.factorial;

public class Main {

 public static void main(String... args) {

 System.out.println(factorial(10));

 }

}

 hello/module-info.java

module hello @1.0 {

 requires fact @1.0;

 class hello.Main;

}

 javac -d modules -modulepath modules -sourcepath sources \

 sources/fact/* sources/hello/*

 java -m hello

46

Project Jigsaw – deploy and run
 jmod create -L repo

 jmod install modules hello fact -L repo
● find repo/

● repo/

● repo/fact

● repo/fact/1.0

● repo/fact/1.0/index

● repo/fact/1.0/info

● repo/fact/1.0/classes

● repo/%jigsaw-library

● repo/hello

● repo/hello/1.0

● repo/hello/1.0/config

● repo/hello/1.0/index

● repo/hello/1.0/info

● repo/hello/1.0/classes

 java -L repo -m hello
● 3628800

 Modules can be used also directly from modules dir where were built

47

Project Jigsaw – deploy and run
 Make jmod packages

● jpkg -m modules/fact jmod fact
● jpkg -m modules/hello jmod hello

● fact@1.0.jmod hello@1.0.jmod

 Make linux packages
● jpkg -m modules/ deb hello
● jpkg -m modules/ rpm fact

● fact_1.0_x86_64.deb hello-1.0.x86_64.rpm

 Install module back from a jmod package
● jmod install -L repo hello@1.0.jmod
● java -L repo -m hello

● 3628800

48

Project Jigsaw – little bit under the hood
 Declaration

module foo{}

module foo @1.0 {}
● Version is optional
● Name is qualified java identifier
● No annotations

 Exports

module foo{

exports foo;

}
● Exports all public types in foo, but not in subpackages
● Name convention

module foo{

exports foo;

exports foo.bar;

exports foo.baz;

}
● No private members export ever!

49

Project Jigsaw – little bit under the hood
 Requires

module bar{

requires foo;

}
● foo and bar will have different classloaders
● Do not export foo's classes
● Optional version constraints

module bar{

requires foopa @ >=1.0;

requires foot @ <2.3a;

}

 Re-exports

module bar{

requires public foo;

}
● Reexports foo's classes (otherwise same)

50

Project Jigsaw – little bit under the hood
 Services

module bar{

 provides service servers.Server with myServers.MyServerImpl;

}
● Provides implementation of service

module bar{

 requires service servers.Server

}
● Is requiring implementation(s) of service
● will got myServers.MyServerImpl in this case

● Enhanced ServiceLoader API with possibility of select the impl
 Services creation: Class<Foo> serviceInterface = ...;

 ClassLoader serviceConsumer = ...;

 // Lazy, No service instances are instantiated

 Iterable<Foo> services = ServiceLoader.load(serviceInterface, serviceConsumer);

 // Instantiation occurs on each call to Iterator.next()

 for (Foo service : services) { if (service.isCapableOf(...)) {

 return service;}}

 return new DefaultFoo();

51

Project Jigsaw – little bit under the hood
 Permits

module foopa{

permits bar;

}
● foopa can be required only by bar
● Otherwise same

 Local dependence

module bar{

requires local foopa;

}
● foopa must explicitly permits bar
● foo and bar will have same classloaders

● The only case of shared classlaoder
● Multi-module packages

 Optional dependence

module foopa2{

requires optional bar2;

}

● Must be ready to work without it

52

Project Jigsaw – little bit under the hood

 Entry point
module foo{

class foo.Main;
}

● Alternative to manifest entry with main method
● Java -m foo

 Base module
Jdk itself - java.base
If module is not requiring exact version, then platform default is
added

53

Project Jigsaw – little bit under the hood
 Aliases

module foo{

provides bar;

}

● Renaming of bar?

● Necessary for renaming of known packages to new modules

 view

module bar{

requires foo;

exports bar

view bar.internal {

permits baz;

exports bar.private;

} view cat {

class org.foo.Cat

} view ls{

class org.foo.List

}

}

 java -m cat x java -m ls

54

Project Jigsaw – modular jdk

 Aliased by java.base

55

Project Jigsaw – classlaoders

 Class.getClassLoader() will never be null
● There will be classlaoder(s) for java.base
● Replacement for bootclassloader

 Each module will have its own classlaoder
● Except multi-module package

 No possibility to access private classes of other
modules

● Some hackish way to get its classlaoder and
then access via some new reflection tricks??

56

Project Jigsaw – byte code

 The module-info.java is compiled into module-
info.class

 New ClassFile.access_flag ACC_MODULE (0x80000)
added on byte code level

 Major/minor version limitation (>= 53.0, jdk 9)
 No implicit reexports – just expanded
 Also views are expanded
 Dependencies, exports and services are tables with

indexes to constant pool

57

Conclusion

 Oracle have fulfill some of his promises
● Community is taken care about
● Lambda is going in
● Most of the small changes are going in

 Dropping of jigsaw in October is sad but probably
worthy

● Modularisation of binary parts?
● Convergence of java ME?

 Dropping of some of some in January 2013 ..
● Well smells like problems

 At least it is still evolution and not revolution

58

Questions?
 http://openjdk.java.net/projects/jdk8/

 http://wiki.eclipse.org/JDT_Core/Java8

 http://openjdk.java.net/projects/jigsaw/doc/module-class-loading.pdf

 http://openjdk.java.net/jeps/0 (all the JEPs of Small features)

 http://julien.ponge.info/notes/building-openjdk8-with-jigsaw/

 http://openjdk.java.net/projects/jigsaw/

 Http://openjdk.java.net/projects/jigsaw/doc/openjdk-jigsaw-modular-services.pdf

 http://icedtea.classpath.org/shenandoah/

 http://openjdk.java.net

Thank you for your attention!

http://openjdk.java.net/projects/jdk8/
http://wiki.eclipse.org/JDT_Core/Java8
http://openjdk.java.net/projects/jigsaw/doc/module-class-loading.pdf
http://openjdk.java.net/jeps/0
http://julien.ponge.info/notes/building-openjdk8-with-jigsaw/
http://openjdk.java.net/projects/jigsaw/
http://openjdk.java.net/projects/jigsaw/doc/openjdk-jigsaw-modular-services.pdf
http://icedtea.classpath.org/shenandoah/
http://openjdk.java.net/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58

